Welcome to the Amira-Avizo Software Use Case Gallery

Below you will find a collection of use cases of our 3D data visualization and analysis software. These use cases include scientific publications, articles, papers, posters, presentations or even videos that show how Amira-Avizo Software is used to address various scientific and industrial research topics.

Use the Domain selector to filter by main application area, and use the Search box to enter keywords related to specific topics you are interested in.

Synchrotron X-ray tomographic quantification of microstructural evolution in ice cream – a multi-phase soft solid

Synchrotron X-ray tomographic quantification of microstructural evolution in ice cream – a multi-phase soft solid

The microstructure of food affects our sensorial perception, its attractiveness, and the manufactured product’s shelf-life.

Microstructural evolution in soft matter directly influences not only the material’s mechanical and functional properties, but also our perception of that material’s taste. Using synchrotron X-ray tomography and cryo-SEM we investigated the time–temperature evolution of ice cream’s microstructure. This was enabled via three adv... Read more

Enyu Guo, Guang Zeng, Daniil Kazantsev, Peter Rockett, Julian Bent, Mark Kirkland, Gerard Van Dalen, David S. Eastwood, David StJohn and Peter D. Lee

Read full paper
In situ studies of materials for high temperature CO2 capture and storage

In situ studies of materials for high temperature CO2 capture and storage

Carbon capture and storage (CCS) offers a possible solution to curb the CO2 emissions from stationary sources in the coming decades, considering the delays in shifting energy generation to carbon neutral sources such as wind, solar and biomass.

The most mature technology for post-combustion capture uses a liquid sorbent, amine scrubbing. However, with the existing technology, a large amount of heat is required for the regeneration of the liquid sorbent, which... Read more

Matthew T. Dunstan, Serena A. Maugeri, Wen Liu, Matthew G. Tucker, Oluwadamilola O. Taiwo, Belen Gonzalez, Phoebe K. Allan, Michael W. Gaultois, Paul R. Shearing, David A. Keen, Anthony E. Phillips, Martin T. Dove, Stuart A. Scott, John S. Dennish and Clare P. Grey

Read full paper
Correlation between triple phase boundary and the microstructure of Solid Oxide Fuel Cell anodes

Correlation between triple phase boundary and the microstructure of Solid Oxide Fuel Cell anodes

This study aims to correlate the active triple phase boundaries (TPBs) to the variation of as-prepared anode microstructures and Ni densifications based on the reconstructed 3D volume of an SOFC anode, providing a point of comparison with theoretical studies that reveal the relationship of TPBs and the material microstructure using randomly packed spheres models.

Read more

Xuekun Lu, Thomas M.M. Heenan, Josh J. Bailey, Tao Li, Kang Li, Daniel J.L. Brett, Paul R. Shearing, Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London

Read full paper
Analyzing the effects of powder and post-processing on porosity and properties of electron beam melted Ti-6Al-4V

Analyzing the effects of powder and post-processing on porosity and properties of electron beam melted Ti-6Al-4V

Metal additive manufacturing techniques such as the powder-bed systems are developing as a novel method for producing complex components.

This study uses synchrotron-based X-ray microtomography to investigate porosity in electron beam melted Ti-6Al-4V in the as-built and post-processed state for two different powders. The presence of gas porosity in the starting powder was shown to correlate to porosity in the as-built components. This porosity was observed to shrink after a hot isosta... Read more

Ross Cunningham, Andrea Nicolas, John Madsen, Eric Fodran, Elias Anagnostou, Michael D. Sangid & Anthony D. Rollett

Read full paper
Automatic method for estimation of in situ effective contact angle from X-ray micro tomography images of two-phase flow in porous media

Automatic method for estimation of in situ effective contact angle from X-ray micro tomography images of two-phase flow in porous media

Multiphase flow in porous media is strongly influenced by the wettability of the system, which affects the arrangement of the interfaces of different phases residing in the pores.

We present a method for estimating the effective contact angle, which quantifies the wettability and controls the local capillary pressure within the complex pore space of natural rock samples, based on the physical constraint of constant curvature of the interface between two fluids. This algorithm is ... Read more

Alessio Scanziani, Kamaljit Singh, Martin J. Blunt, Alberto Guadagnini

Read full paper
Quantification of the degradation of Ni-YSZ anodes upon redox cycling

Quantification of the degradation of Ni-YSZ anodes upon redox cycling

Ni-YSZ anodes for Solid Oxide Fuel Cells are vulnerable to microstructural damage during redox cycling leading to a decrease in the electrochemical performance.

 

  • Quantification of redox damage by coupling 3D tomography, EIS and nanoindentation.
  • YSZ fracture, Ni detachment and agglomeration led to irreversible mechanical damage.
  • Ni nanoparticles obtained upon redox cycling improve electrochemical performance.
  • Loss in TPB densi... Read more

Bowen Song, Enrique Ruiz-Trejo, Antonio Bertei, Nigel P.Brandon

Read full paper
Linking defects, hierarchical porosity generation and desalination performance in metal–organic frameworks

Linking defects, hierarchical porosity generation and desalination performance in metal–organic frameworks

Composite membranes with defective metal–organic frameworks (MOFs) connect the emerging fields of MOF topological modification, MOF-polymer interfacial engineering and composite material functionalization.

Although defective MOFs can be fabricated via thermal or chemical treatment, the relationship between hierarchical MOF structure and their performance in a polymeric membrane matrix has so far not been investigated. Here we show how a modula... Read more

Weibin Liang, Lin Li, Jingwei Hou, Nicholas D. Shepherd, Thomas D. Bennett, Deanna M. D'Alessandro and Vicki Chen

Read full paper
Multi-length scale tomography for the determination and optimization of the effective microstructural properties in novel hierarchical solid oxide fuel cell anodes

Multi-length scale tomography for the determination and optimization of the effective microstructural properties in novel hierarchical solid oxide fuel cell anodes

Our parametric study shows that increasing the porosity in the spongy layer beyond 10% enhances the effective transport parameters of the spongy layer at an exponential rate, but linearly for the full anode. For the first time, local and global mass transport properties are correlated to the microstructure, which is of wide interest for rationalizing the design optimization of SOFC electrodes and more generally for hierarchical materials in batteries and membranes.

Read more

Xuekun Lu, Oluwadamilola O. Taiwo, Antonio Bertei, Tao Li, Kang Li, Dan J.L. Brett, Paul R.Shearing

Read full paper
Contrast-enhanced 3D micro-CT of plant tissues using different impregnation techniques

Contrast-enhanced 3D micro-CT of plant tissues using different impregnation techniques

X-ray micro-CT has increasingly been used for 3D imaging of plant structures. At the micrometer reso-lution however, limitations in X-ray contrast often lead to datasets with poor qualitative and quantitative measures, especially within dense cell clusters of plant tissue specimens. The current study developed protocols for delivering a cesium based contrast enhancing solution to varying plant tissue specimens for the purpose of improving 3D tissue structure characterization within plant spec... Read more

Zi Wang, Pieter Verboven and Bart Nicolai, Department of Biosystems KU Leuven – University of Leuven Willem de Croylaan, Leuven Belgium

Read full paper
Enhanced Imaging of Lithium Ion Battery Electrode Materials

Enhanced Imaging of Lithium Ion Battery Electrode Materials

The authors present for the first time a new methodology of contrast enhancement for 3D imaging, including novel advanced quantification, on a commercial Lithium Iron Phosphate (LFP) LiFePO4 cathode. The aim of this work is to improve the quality of the 3D imaging of challenging battery materials by developing methods to increase contrast between otherwise previously poorly differentiated phases. This is necessary to enable capture of the real geometry of electrode microstructures... Read more

Moshiel Biton, Vladimir Yufit, Farid Tariq, Masashi Kishimoto and Nigel Brandon

Read full paper
Tortuosity in electrochemical devices: a review of calculation approaches

Tortuosity in electrochemical devices: a review of calculation approaches

Here, a review of tortuosity calculation procedures applied in the field of electrochemical devices is presented to better understand the resulting values presented in the literature. Visible differences between calculation methods are observed, especially when using porosity–tortuosity relationships and when comparing geometric and flux-based tortuosity calculation approaches.

Read more

Bernhard Tjaden, Dan J. L. Brett, Paul R. Shearing

Read full paper
Hydraulic properties of porous sintered glass bead systems

Hydraulic properties of porous sintered glass bead systems

In this paper, porous sintered glass bead packings are studied, using X-ray Computed Tomography (XRCT) images at 16μm16μm voxel resolution, to obtain not only the porosity field, but also other properties like particle sizes, pore throats and the permeability. The influence of the sintering procedure and the original particle size distributions on the microstructure, and thus on the hydraulic properties, is analyzed in detail. The XRCT data are visualized and studied by advanced image fil... Read more

University of Twente, Enschede | Ruhr-University Bochum; Eindhoven University of Technology | Helmholtz Institute Erlangen-Nürnberg for Renewable Energy | University of Stuttgart

Read full paper
X-ray computed tomography of packed bed chromatography columns for three dimensional imaging and analysis

X-ray computed tomography of packed bed chromatography columns for three dimensional imaging and analysis

Physical characteristics critical to chromatography including geometric porosity and tortuosity within the packed column were analysed based upon three dimensional reconstructions of bed structure in-situ. Image acquisition was performed using two X-ray computed tomography systems, with optimisation of column imaging performed for each sample in order to produce three dimensional representations of packed beds at 3 μm resolution.

Read more

Department of Biochemical Engineering, University College London | Pall Life Sciences, Portsmouth | Electrochemical Innovation Lab, Department of Chemical Engineering, University College London

Read full paper
SIK-ISEA uses Avizo software to understand 19th century painting techniques

SIK-ISEA uses Avizo software to understand 19th century painting techniques

The characterization of the porosity of ground layers in easel paintings: a first step towards understanding its role in water uptake, reactivity and material transport in 19th and early 20th century paintings. The Swiss Institute for Art Research (SIK-ISEA) is studying the studio practice of Swiss painters of the late 19th early 20th century, the materials they used for their paintings, and the deterioration processes the paintings undergo as they age.

Amongst other issues this study... Read more

SIK-ISEA

Learn more