Welcome to the Amira-Avizo Software Use Case Gallery

Below you will find a collection of use cases of our 3D data visualization and analysis software. These use cases include scientific publications, articles, papers, posters, presentations or even videos that show how Amira-Avizo Software is used to address various scientific and industrial research topics.

Use the Domain selector to filter by main application area, and use the Search box to enter keywords related to specific topics you are interested in.

Microstructure development analysis of long-glass-fiber-reinforced polypropylene in injection molded spiral-flow

Microstructure development analysis of long-glass-fiber-reinforced polypropylene in injection molded spiral-flow

The research focuses on the fiber behavior following injection molding on a spiral-flow mold, particularly its fiber orientation behavior. The behavior of the glass fiber will be examined by altering key experiment settings, the screw speed and the back pressure, and employing different melt paths. The results show that the application of high back pressure and high screw speed decreased the fiber length but successfully increased the fiber orientation average to the flow direction. The desig... Read more

Ahmad Hafizh Ridho, Feng-Jung Cheng, Sheng-Jye Hwang

Read full paper
Over the rainbow? Micro-CT scanning to non-destructively study Roman and early medieval glass bead manufacture

Over the rainbow? Micro-CT scanning to non-destructively study Roman and early medieval glass bead manufacture

The usefulness of desktop Micro-CT scanners for the study of archaeological artefacts is demonstrated in a non-destructive study of manufacturing methods of Roman and Early Medieval monochrome and polychrome glass beads. Differences in glass colours show up in these scans as differences in attenuation. The presence and distribution of bubbles and various inclusions (metal, opacifier) are also well visible. Shaft shapes and patterns of bubbles inside the glass make it possible in most cases to... Read more

D.J.M.Ngan-Tillard, D.J.Huisman, F.Corbella, A.Van Nass

Read paper
Influence of the rheological properties on the steel fibre distribution and orientation in self-compacting concrete

Influence of the rheological properties on the steel fibre distribution and orientation in self-compacting concrete

The interest in potential applications produced with self-compacting fibre reinforced concrete continues to grow, but in practice, problems associated with an uneven distribution and orientation of fibres in the concrete structure occur. It is not clear what exactly influences uneven distribution of fibres in selfcompacting concrete (SCC) mixtures, especially during the casting and how different factors influence fibre orientation. The objective of this work was to investigate how rheological... Read more

Elena Jasiuniene, Vaidotas Cicenas, Paulius Grigaliunas, Zymantas Rudzionis, Arunas Aleksandras Navickas

Read paper
Spiny fruits revealed by nano-CT scanning: Pseudoanacardium peruvianum (Berry) gen. et comb. nov. from the early Oligocene Belén flora of Peru

Spiny fruits revealed by nano-CT scanning: Pseudoanacardium peruvianum (Berry) gen. et comb. nov. from the early Oligocene Belén flora of Peru

Fossil fruits formerly described as cashews from the Oligocene of Peru are reinvestigated based on the original specimens and newly collected materials. The recovery of an outer spiny layer, preserved in the sedimentary molds surrounding the locule casts, indicates that these disseminules do not represent Anacardium. Imagery from nano-CT scans of the specimens documents a distinctive morphology which does not resemble any fruits or seeds of Anacardiaceae. We describe the morphology in more de... Read more

STEVEN R. MANCHESTER, BEHNAZ BALMAKI

Read full paper
Influence of Deformation and Stress between Bone and Implant from Various Bite Forces by Numerical Simulation Analysis

Influence of Deformation and Stress between Bone and Implant from Various Bite Forces by Numerical Simulation Analysis

Endosseous oral implant is applied for orthodontic anchorage in subjects with multiple tooth agenesis. Its effectiveness under orthodontic loading has been demonstrated clinically and experimentally. This study investigates the deformation and stress on the bone and implant for different bite forces by three-dimensional (3D) finite element (FE) methods. A numerical simulation of deformation and stress distributions around implants was used to estimate the survival life for implants. The model... Read more

Hsin-Chung Cheng, Boe-Yu Peng, May-Show Chen, Chiung-Fang Huang, Yi Lin, and Yung-Kang Shen

Read full paper
Patient-specific anatomical model for deep brain stimulation based on 7 Tesla MRI

Patient-specific anatomical model for deep brain stimulation based on 7 Tesla MRI

Deep brain stimulation (DBS) requires accurate localization of the anatomical target structure, and the precise placement of the DBS electrode within it. Ultra-high field 7 Tesla (T) MR images can be utilized to create patient-specific anatomical 3D models of the subthalamic nuclei (STN) to enhance pre-surgical DBS targeting as well as post-surgical visualization of the DBS lead position and orientation. We validated the accuracy of the 7T imaging-based patient-specific model of the STN and m... Read more

Yuval Duchin, Reuben R. Shamir, Remi Patriat, Jinyoung Kim, Jerrold L. Vitek, Guillermo Sapiro, Noam Harel

Read full paper
The visible skeleton 2.0: phenotyping of cartilage and bone in fixed vertebrate embryos and foetuses based on X-ray microCT

The visible skeleton 2.0: phenotyping of cartilage and bone in fixed vertebrate embryos and foetuses based on X-ray microCT

For decades, clearing and staining with Alcian Blue and Alizarin Red has been the gold standard to image vertebrate skeletal development. Here, we present an alternate approach to visualise bone and cartilage based on X-ray microCT imaging, which allows the collection of genuine 3D data of the entire developing skeleton at micron resolution.

Our novel protocol is based on ethanol fixation and staining with Ruthenium Red, and efficiently contrasts cartilage matrix, as demonstrated in wh... Read more

Simone Gabner, Peter Böck, Dieter Fink, Martin Glösmann, Stephan Handschuh

Read full paper
Experimental study on the cracking process of layered shale using X-ray microCT

Experimental study on the cracking process of layered shale using X-ray microCT

The cracking process in Longmaxi formation shale was experimentally studied during uniaxial compressive loading. Both the evolution of the three-dimensional fracture network and the micromechanics of failure in the layered shale were examined as a function of the inclination angle of the bedding plane. To visualize the cracking process, the test devices presented here used an industrial X-ray CT scanner that enabled scanning during the uniaxial compressive loading. Scanning electron microscop... Read more

Institue of Geomechanic, Chinese Academy of Geological Sciences, Laboratory of Shale Oil & Gas, Beijing, China

Read full paper
The Fraunhofer Institute uses Avizo to explore a Peruvian mummy CT-scan

The Fraunhofer Institute uses Avizo to explore a Peruvian mummy CT-scan

As part of the Big Picture project, researchers at Fraunhofer IIS are working on three dimensions images of objects with great precision. In order to demonstrate the progress of the project, which has begun in February 2018, they made the 3d Xray-CT acquisition of a mummy from the Linden-Museum Stuttgart collection, probably from the 11th-15th century.
Modern measurement systems are producing increasingly large volumes of extremely complex data that must be stored, processed and convert... Read more

Prof. Dr. Tomas Sauer

Learn more
Defect detection in 3D printed carbon fibre composites using X-ray Computed Tomography

Defect detection in 3D printed carbon fibre composites using X-ray Computed Tomography

X-ray Computed Tomography (X-ray CT) has become a vital tool for product quality inspection. The X-ray CT analysis of 3D printed composites, with a layer-by-layer structure of carbon fibre/polyamide and polyamide plies, demonstrates how the void content increases with an increasing number of consecutive carbon fibre layers. Not only the void content, but also the pore
network complexity increases, as more pore types are introduced into the sample. The PolyAmide (PA) matrix has an averag... Read more

Jeroen Soete1, Brice Badoux, Yentl Swolfs, Larissa Gorbatikh, Martine Wevers

Read full paper
Characterization of Coal Micro-Pore Structure and Simulation on the Seepage Rules of Low-Pressure Water Based on CT Scanning Data

Characterization of Coal Micro-Pore Structure and Simulation on the Seepage Rules of Low-Pressure Water Based on CT Scanning Data

This paper used the X-ray three-dimensional (3D) microscope and acquired, through CT scanning, the 3D data of the long-frame coal sample from the Daliuta Coal Mine.

Then, the 3D datacube reconstructed from the coal’s CT scanning data was visualized with the use of Avizo, an advanced visualization software. By means of a gray-scale segmentation technique, the model of the coal’s micro-pore structure was extracted from the object region, and the precise characterization was then cond... Read more

Gang Zhou, Qi Zhang, Ruonan Baiand, Guanhua Ni

Read full paper
Under the armor: X-ray computed tomographic reconstruction of the internal skeleton of Coahomasuchus chathamensis (Archosauria: Aetosauria) from the Upper Triassic of North Carolina, USA, and a phylogenetic analysis of Aetosauria

Under the armor: X-ray computed tomographic reconstruction of the internal skeleton of Coahomasuchus chathamensis (Archosauria: Aetosauria) from the Upper Triassic of North Carolina, USA, and a phylogenetic analysis of Aetosauria

Aetosauria is a clade of heavily armored, quadrupedal omnivorous to herbivorous archosaurs known from the Late Triassic across what was the supercontinent of Pangea. Their abundance in many deposits relative to the paucity of other Triassic herbivores indicates that they were key components of Late Triassic ecosystems. However, their evolutionary relationships remain contentious due, in large part, to their extensive dermal armor, which often obstructs observation of internal skeletal anatomy... Read more

Devin K. Hoffman​, Andrew B. Heckert, Lindsay E. Zanno

Read full paper
Assessment of effective elastic properties and residual stresses in directionally solidified eutectic Al2O3/YAG/ZrO2 ceramics by finite element analysis

Assessment of effective elastic properties and residual stresses in directionally solidified eutectic Al2O3/YAG/ZrO2 ceramics by finite element analysis

Current materials such nickel based superalloys cannot be used anymore and new materials are thus considered. For the hottest parts of jet engines, eutectic ceramics have potentially interesting features. In order to assess the thermo-mechanical properties of this material, numerical multi-scale analyses may be performed. Thus, a 3D finite element model was generated from a CT scan, representative of the microstructure and with a similar volume fraction. Effective elastic properties were calc... Read more

S. Gourdin, L. Marcin, M. Podgorski, M. Cherif, L. Carroz

Read full paper
New omomyoids (Euprimates, Mammalia) from the late Uintan of southern California, USA, and the question of the extinction of the Paromomyidae (Plesiadapiformes, Primates)

New omomyoids (Euprimates, Mammalia) from the late Uintan of southern California, USA, and the question of the extinction of the Paromomyidae (Plesiadapiformes, Primates)

Paromomyidae has been thought to represent the longest-lived group of stem primates (plesiadapiforms), extending from the early Paleocene to late Eocene. We analyzed primate material from the late-middle Eocene of southern California that had initially been ascribed to cf. Phenacolemur shifrae. This material falls at the lowest end of the size range for the family. The Californian specimens also exhibit several dental features that are atypical for paromomyids, such as a strong paraconid on t... Read more

Sergi López-Torres, Mary T. Silcox, and Patricia A. Holroyd

Read full paper
Allometry and integration do not strongly constrain beak shape evolution in large-billed (Corvus macrorhynchos) and carrion crows (Corvus corone)

Allometry and integration do not strongly constrain beak shape evolution in large-billed (Corvus macrorhynchos) and carrion crows (Corvus corone)

Here, to evaluate the intensity of evolutionary constraints on avian beak shape more appropriately, we selected large billed (Corvus macrorhynchos) and carrion crows (Corvus corone) as study objects. These landbird species seem to experience selection pressures favoring a departure from an allometric trajectory. A landmark based geometric morphometric approach using three dimensional reconstructions of CT scan images revealed that only 45.4% of the total shape variation was explained by allom... Read more

Takeshi Yamasaki, Sou Aoki, Masayoshi Tokita

Read full paper
A high-throughput, fully automated morphometric method to discover the genes controlling shape differences in the Faroese mice

A high-throughput, fully automated morphometric method to discover the genes controlling shape differences in the Faroese mice

The Faroe Islands are a group of islands in the North Atlantic that are known for its natural beauty, Viking culture and a special population of house mouse. The Faroese house mouse from the most remote island of the Faroese, Mykines (population: 10 people), looked so distinct when it was discovered that it was declared a subspecies, Mus musculus faeroenesis. These mice are large-bodied and showed an extreme form of left-right asymmetry in its skull. Our research group has... Read more

Yingguang Frank Chan, William H. Beluch, Rémi Blanc

Watch video
A method for deducing neck mobility in plesiosaurs, using the exceptionally preserved Nichollssaura borealis

A method for deducing neck mobility in plesiosaurs, using the exceptionally preserved Nichollssaura borealis

The elongate-necked aquatic plesiosaurs existed for 135 Myr during the Mesozoic. The function of this elongate neck is a point of debate. Using computed tomography and three-dimensional (3D) modelling, the range of motion (ROM) of the plesiosaur Nichollssaura borealis neck was assessed. To quantify the ROM, the intervertebral mobility was measured along the cervical vertebral column. This was done by manipulating the 3D models in the lateral and dorsoventral directions during two tri... Read more

Ramon S. Nagesan, Donald M. Henderson, Jason S. Anderson

Read full paper
Resurrecting Darwin’s Niata - anatomical, biomechanical, genetic, and morphometric studies of morphological novelty in cattle

Resurrecting Darwin’s Niata - anatomical, biomechanical, genetic, and morphometric studies of morphological novelty in cattle

The Niata was a cattle variety from South America that figured prominently in writings on evolution by Charles Darwin. Its shortened head and other aspects of its unusual morphology have been subject of unsettled discussions since Darwin’s time. Here, we examine the anatomy, cranial shape, skull biomechanics, and population genetics of the Niata. Our results show that the Niata was a viable variety of cattle and exhibited anatomical differences to known chondrodysplastic forms. In cranial s... Read more

Kristof Veitschegger, Laura A. B. Wilson, Beatrice Nussberger, Glauco Camenisch, Lukas F. Keller, Stephen Wroe, Marcelo R. Sánchez-Villagra

Read full paper
Automatic method for estimation of in situ effective contact angle from X-ray micro tomography images of two-phase flow in porous media

Automatic method for estimation of in situ effective contact angle from X-ray micro tomography images of two-phase flow in porous media

Multiphase flow in porous media is strongly influenced by the wettability of the system, which affects the arrangement of the interfaces of different phases residing in the pores.

We present a method for estimating the effective contact angle, which quantifies the wettability and controls the local capillary pressure within the complex pore space of natural rock samples, based on the physical constraint of constant curvature of the interface between two fluids. This algorithm is ... Read more

Alessio Scanziani, Kamaljit Singh, Martin J. Blunt, Alberto Guadagnini

Read full paper
MIA-Clustering: a novel method for segmentation of paleontological material

MIA-Clustering: a novel method for segmentation of paleontological material

Paleontological research increasingly uses high-resolution micro-computed tomography (μCT) to study the inner architecture of modern and fossil bone material to answer important questions regarding vertebrate evolution. This non-destructive method allows for the measurement of otherwise inaccessible morphology. Digital measurement is predicated on the accurate segmentation of modern or fossilized bone from other structures imaged in μCT scans, as errors in segmentation can result in inaccur... Read more

Christopher J. Dunmore​, Gert Wollny, Matthew M. Skinner

Read full paper
FAMU uses Avizo software to visualize and understand heat transfer and fluid flow

FAMU uses Avizo software to visualize and understand heat transfer and fluid flow

The CHEFF (Computational Heat Fluid Flow) Research group at Florida Agricultural & Mechanical University is using computational fluid dynamics to model flow and heat transfer in various engineering applications for industry, government and the private sector. The primary goal of this research is to first examine and then enhance the thermal performance of current and future low-density reticulated porous media, and explore their use as heat sinks in high power electronics (computer chips... Read more

CHEFF Research Group at Florida Agricultural & Mechanical University: Dr. G.D. Wesson, Professor of Chemical Engineering/Biological Agricultural Systems Engineering, Shawn Austin (Graduate student), Shari Briggs (Graduate student), Mellissa McCole (Graduate student), David Mosley (Graduate student)

Learn more